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pressurized.

This facility is now in routine operation at USAG Camp Parks, California.
Its design concepts could be readily scaled up to provide for testing of larger|

objects such as weapon systems.
be obtained if needed in other applications. Because of its short turnaround
time, this airblast simulator is an attractive alternative to other methoas,
providing both Tow cost and convenience of operation and offering a diversity
of test parameters not otherwise available.
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PREFACE

This work was authorized under Contract DNAOOLI-78-C-0230, Progran

Element D62704H, Project V99QAXN, Tuask Area, L1222, Work Unit 56,

As a preliminary ettort to an experimental study of the interactions

of airblast with fires resulting from nuclear exposions, we completed a
special simulation tacility, whose initial development was supported by
funds from the Defense Civil Preparedness Agency, and demonstrated the
feasibility of the design concept.  Further support of this program by

DNA has not, to date, been forthcecoming.

Credit tor the concept is due Thomas C. Goodale of SRI's Poulter

Laboratory. Among those who contributed to successful translation of the

concept to an operating facilitv, Frank I. Laughridge, John R. Nichols,
Robert . McKee, Jr., and Walter Johnson are particularly noteworthy,
Much of the construction work was accomplished under subcontract to

Steam Specialties Company of San Francisco.

The author is indebted to Colonel John €. Corral, Commanding Ot ticer

of USAG Camp Farks, for his paticnce during the protracted period of

construction.
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SECTION 1

INTRODUCTTON i

Fire is an important cause of the damage resulting from explosions
5 :
ot nuclear wu:muns,l in tactical™ as well as stratvgin'} emplovment.
Although tire is not usually considered o prime {actor in targeting
because its destructiveness is notoriously so diftficult to predict, it {

. - % -
cannot be iwnored as a collateral ceftect. In tact, its consequences

mav outweigh all other effects combined. §

Among the tactors limiting fire damage (and the major sources ot
uncertainty in fire-damage prediction), airblast interactions are unique,
both in potential importar - and in the extent of our ignorance about them.
Ihe importance of these interactive effects of blast and tire has bheen
recopnized for a considerable time, but only a limited rescarch otfort
has been directed toward understanding and quantitatively evaluating
them.  These effects include the dvnamic intluences (enhancement as well
as extinguishment) ot the passage of the air shock over ignited materials
and the perturbations in fire growth and spread caused by the residual
disarrav produced in target elements by blast ceffects.  This rescarch
has provided some insight, but the remaining contradi-tions can be
resolved only throngh additional experimental studvy, complemented by the

development of g rational methodology tor combined-cttects da

IR

assessment

Ot the several critical ancertainties, perhaps the one that over-
shadows all others i< 2he extinction {or suppression) ot tire by oair ]
blast =ince it raises sach questions as:  How manyv (it anv) tires suar-
vive the blast, in what conditions, and in what Tocations? In short,
we cantot predict the combinations ot conditions that cither suppress
primary fires--reducing them tor a time to a smoldering state--or extin-
vriish them outright. Indeed, we have not been able to decide, to date,
which ot the manv variables are the important ones.  The tacility des-
cribed in this report was developed specitically to overcome this tech-

nical deticiency.

5




SECTTON 2 |

OBIFCTIVES

e overall objectives of the rescarch were to

(i)Y Determine the phesical mechanisms ot extincetion ot
Fire by hlast waves and ascertain scaling relation-

ships.

1) Develop computat ional models tor fuel olements in
frec=ticld disposition and urban enclosures.

3 fest the validity of model predictions in a tututre

tield test (e.g., Misty Castle).

e work reported here represents an initial ettort to partially
satisty Objective 1 oby completing the development of the necessary
cxperimental tacilitev,  Tdeallv, this rescarch progran should prooress
through iterative cveles.  The first iteration might be scheduled to
conelude with iceld=test validation of hvpotheses derived trom o limited
expoerimental ettort, at a suitable HE shot in the Misty Castle series.,
Considering the complexity of the blast-Uire interaction problem, it is
unreasonable to expect that the whole problem can be resolved in a singls
iteration of two vear's duration. Nevertneless, we are contident that
we will have signiticantly advanced onr understanding of the interactions

when that initial iteration concludes with the experiements planned ror

the upcoming MILL RACE cvent of the Miste Castle series,




SECTTON 3

PROGRAM STATUS

The SRI-developed shocktube tacility was completed and tested during
this contract period. Tt is now tully operational and iz being used to
investigate airblast extinction ot fires under contract to the Federal !
Emergency Management Agencvy (FEMA) . In this wav, a partial gemonstration
of its utility and versatility has been atfforded; however, its rull
potential cannot be realized until farther investment is made in diagnostic
instrumentation and in retining the svstem of oritices, diaphrams, the
receiver tank, and other accessories that provide the capability for
unusuallyv long positive-phase durations and the independent control ot

overpressure, duration, and decay of particle velocity hehind the shock.

This section describes the design and operation of the shocktube
tacility and the lmited tests conducted to improve its operation.
Later use ot the facility in studies of fire extinction tunded by DOPAY

FEMA is also described.

FUNCTTON OF THE SHOCKTUBE FACILITY

[n ail previous experiments, the blast-wave simulations have boen
inadequate to permit resolution of the many variables involved in ~oat
practical situations.  The tundamental weakness in experiments condootod
to date has been their lack of independent variability ol peak over-
pressure, positive-phase duration, and tlow behind the shock tront. soch ]
variability would allow svstematic study of tire extinguishing mechanisme
and the dependence of extinction on pertinent acrodvonamic conditions that
can vary so widelv, especially in an urban target.
The SRI-developed blast/fire facility was specitically desivned tor
used in ostudving blast/fire interactions by allowing the phenome g to b

vbserved directly, providing repeatability of fest conditions and oo

venience of operation, and making svstematic investigation possible




through independent variability of air blast characteristics over the

practical range ot valuaes in which fire ertects are sieniticant.

DESCRIPTTON OF THE SHOCKTUBE FACTLITY

The tacitity {s illustrated in Fivoare |, e central teatare i
the JO0=-inch=diameter, alr=driven shocktube speciticat!ly desioned for
experiments in blast—tire interactions.  This shocktube produces blast
wives that simulate the characteristics of kiloton-to-megaton neclear
exprlosions in air.  Peak overpressures and positive-phase doarations are
preselected and controlled by the operator.  Overpressuares are detor-
mined by chotce ot initial pressure in the plenum that drives the shock-
tube.  The duration is controlled by a mechanism tor relive of plonum

pressure by Jdiverting a portion or the airflow trom the shooktnbe,

The tacility is desivned to provide peak overpressarces up tooat
Teast 25 psioand positive-phase durations trom abont D010 to more than
3.0 seconds. A svstem of orifices at both ends or the shocktube, corm-
Bined with a receiver tank at the exhaust end, mateh the cnttrlow o
the receiver tank (when [t is tullyv pressurized) to the outtlow of the
plenum to prevent the premature raretaction of the test scetion. ik
tacility includes a telescoping test—scction closure that ailows tirves
to become established, while burning in the open Predch, beiore being
cnelosed. The breach is then closed, jnst as the shock i=s initiated,

with minimal delav to prevent depriving tine fire or oxveen.  For sate

operation, this closure must oceur automatically upon comnmand trom o

remote location.

The shock is initiated by explosively shearing thoe preossure-stress<od
(tupicatlyv dead=sott aluminum) diaphraem with o Detasheot Tine charae
arranged as oan asterform with capitals, This cuts the diaphvaum cieanly,
acarly instantancousiv, and altlows the diaphraes tootobd bhack smoothils
Avainst the walls of the tube for minimal intertercence with the expandine
air flow. A similar teehnique is planned tor use on the diaphrasms ot
the multiapertured plenum relict cwhich i= inchaded as a0 scparate control

ot the positive-phase duration) but so tar we have not haod ocoasion to

use this teatnre,

b e
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PERFORMANCE WITHOUT FIRES, DTAGNOSTIC REQUIREMENTS

The tirst shot was tired on 1Y December 14780 A plenum pressure ol
17 psig produced a remarkably clean, nominally 5% psi, peak-overpressure !
shock wave of 3 s positive-phase duration (see Figure 2). The long :
positive phase with onlyv minor perturbation due to premature rarctaction i
is a singular achievement, and the generally successtul results are
remarkable for a first trv.  The shock=dissipation "muftfler” at the ond !

of the tube worked as it was designed to, degrading the cmerging shock
so completely to potential tlow as it entered the receiver tank that

nearby observers heard more ot a "whoosh'" than a "bang."

The Detasheet technique for rupturing the pressure restraining

diaphragm also worked exactly as designed, instantly parting the aluminum
into six petals that folded tlat against the tube walls with minimal
retardat ion ot the tlow of air driving the shock and no introduction of
extrancous materials or diaphragm fragments into the test section.

There is no doubt that this technique will work equally well on the
multiapertured plenum reliet device, and thereby allow the pressure

pulse duration to be varied in small steps down to less than one-tenth

Ak et ke a8

of the value resulting from this test, in which all the compressed air

in the plenum exhausted through the shocktube. |

Several nonideal characteristics were noted in the pressure-time
pulse of Shot 1, shown in Figure 2. A 20-ms spike of roughlv [ psi
amplitude appears on the shock front and is followed 50 to 60 ms later
by oa similar spike of somewhat reduced overpressure. Tt is reasonable :
to suppose that the tirst spike results from the impulse of the detonat ing

Detasheet astertorm used to cut the diaphragm, ]

The second spike covid then be explained as a reflection trom the
upstream oritice of the counterpart shock created buv the same impulse--
transmitted through the aluminum of the diaphragm--since the path up and
back is just over 60 ft (i.e., if we take 1120 ft/s as the speed of sound
in air, the approximate shock transit time would be 6O/1120 = 0.53 8).
Since the orifice diameter was about half the tuabe diameter, three-

quarters of a plane shock wave could be returned by reflection., 3

10 !
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These spikes would be proportionately more objectionable at Tower

peak overpressures; therefore, we have considered other techniques ot :

diaphraym rupture that do not emplov explosives,  One such technique

uses celectrically heated wires to cut nonmetallic diaphragms, c.g.,

My lar sheet.,

The relatively tlat-topped portion of the pressure pulse (up to
about 400 ms) is not tullyv understood.  Further attention should be

paid to tois nonideal behavior.

An abrupt drop in pressure was obscerved atfter 300 ms at the test
section and atfter 300 ms at a pressure monitoring station about half
wav downstream the tube. This pressure drop is pr»:sumz)hly;: caused by the
returning raretact ion that was inadequately suppressed by the flow-control
oritices and/or receiver tank volume originallv chosen.  Some mismatch was '
entirely expected on the tirst shot because the state of the art does
not permit exact caleulation of orifice discharge coetficients. Never-
theless, the pressure decay remained positive throughout the pertur-

bation, and the normal-decav waveform was restored after |os.

Our second shot, tired on 20 December 1978, was an attempt to correct
the perturbation duce to premature raretfaction.  Premature raretaction
can result from any of several design mismatches.,  Fither an oversized
set ot relief orifices in the receiver tank or an undersized oritice
between plenum and tube would delav the filling of the receiver tank and
prolong the rarefaction process.  That is, the orifices must be matched
relative to ecach other, but in addition the absolute values must be

large enough to permit the flow behind the shock to decav as it would

in tree air. Moreover, the volume of the receiver (including the volume 1
ot the muftler chamber) must be matched to the quantity ot air supplied

to it. The simple pressure-time information available trom the first

shot was not sutfficient to ascertain the moditication required: there-

fore, we arbitrarily chose to reduce the diameters of the downstream

orifices for the second shot. i

The times of appearance are entirelyv consistent with the propagation
rates and distances.




The second shot was intended to be an exact duplicate of the first
except for the change in downstream orifice size. However, because we
lacked control of plenum air temperature, it was necessary to compensate
for the lower temperatures on the second shot (resulting from less solar
heating of the tank) by increasing the pressure. The pressure at the

time of firing was 18.4 psig.

Figure 3 compares the record for the second shot with that from the
first, illustrating the close similarity of the two for the first 54 ms,
Unfortunately, spot welds holding the cover of the muffler section let
go about the time the pressure in the muffler chamber reached its peak,
thereby shortening the positive phase. The effect of this shortening
was apparently not felt at the test-section pressure gage until after the
rarefaction wave reached it, so the record provides evidence that our
remedy was unsuccessful, We now sSuspect that a better choice would have

been to enlarge the upstream orifice,

Nevertheless, this second test was very useful, and it nicely illus-
trates the pitfalls in trying to remedy design mismatches without suffi-
cient and appropriate diagnostic measurements. It also gives unmistakable
evidence of the validity of the design concept. The sudden loss of pres-
sure from the muffler resulted in an abrupt increase in the rate of decay
of positive pressure. Note that sudden decompression of the muffler
chamber does not produce immediate blowdown of the receiver tank, since
the two are connected through a series of small holes. This accounts for
the somewhat gradual loss in pressure instead of abrupt termination of
the positive phase. The test also showed that, with proper diagnostics,
we could proceed with confidence to determine what is needed to climinate

the perturbing effects of premature rarefaction.

*
STUDTES OF FIRE EXTINCTION

All use of the facility since December 1978 has been restricted to

studies of fire extinction. Before this feature of the facility could

*
This summary of effort funded by DCPA/FEMA is extracted from Reference 5,

13
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be exploited, it was necessary to modify the test section of the shock-

tube to provide a fuel supply, fuel bed support, and a means for fast,
semiautomatic closure of the test-section breach. Test target design
requirements were complicated by the necessity ot supporting the ensemble
without interfering with either the operation of the telescoping breach

closure or with the shockwave as it approaches the target.

TEST SECTION MODIFICATIONS

The initial experiments were visualized to be idealizations of the
kerosene/gravel fuel beds used at Mixed Company.b To minimize pertur~
bations in the air shock and subsequent flow, a thin, flat plate having
sharp leading and trailing edges was chosen as the basic form of the
fuel bed support. This platform, illustrated in Figure 4, is rigidlyv
supported in a near midstream position by a sharp-edge cantilever
attached to the stationary shocktube section just torward of the test
section opening. The platform accepts 10-inch-wide fuel beds of variable
lengths up to 37 inches along the direction of shock propagation. The
fuel is set into a recess on the top surface and is ordinarily tlush with
the top surface. The telescoping section is closed on remote command,
initiating an automatic sequence to start the cameras. After a 1.6 s
delay, to allow the film to accelerate to full speed, the line
charge asterform en the diaphragm is fired to initiate the shock. A
borosilicate glass window in the sliding section allows the fuel bed and

flames over it to be observed and recorded on film.

Measurements are limited to temperature-~time and overpressurce-time
records. The principal form of target response information, besides the
postshot observation of whether extinguishment has occurred, is provided
by high-speed cclor photography (approximately 2000 frames-per-second

framing rate) of the flames during shock diffraction and the period of

subsequent hydrodynamic motion.
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FLAME DISPLACEMENT OVER FUEL-SOAKED WICKS

The initial experiments modeled the inconclusive experiments run in
the field in 1972 at Operation Mixed Cnmpany.h n-Hexane was chosen as o
Class B fuel substitute for the kerosene used at Mixed Companv., This
change was telt to be desirable mainly because the use of a single sub- ;
stance of well-defined properties avoids possible ambiguities of less
well-detined mixtures whose properties can change with time, but also

because hexane is somewhat cleaner burning (less sooty) than keroscene,

The tirst set of Class B fuel tests was run with the longest avail-
able positive-phase durations. Comparison of the pressure pulses trom
shots 4 and 5 (Figures 5 and b) suggests that we were able to make
progress toward eliminating the perturbing rarefaction without the help

of diagnostic instrumentation; however, that mav not be so, because the

effects of the flames may be obscurring pressure transients in these tests.

Consistent extinction of flames occurred at all overpressures down
to about 1 psi (where the pressure spike from the line-charge explosive
used to cut the diaphragm appreciably perturbs the air-driven pressure
pulse). Therefore, we decided to drastically shorten the pulse duration,
but rather than using the alternative venting feature, we chose to blank
off the tank at the orifice flange and use only the 33.5-foot scction ot
tube between the diaphragm and the tank as the pressure plenum. For the
remainder of experimental work reported in Reference 5, we continued to
operate in this short-duration mode. Example pressure pulses are shown

in Figures 7 and 8.
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SECTION 3

RECOMMENDATTONS

We belicve that DNA has unique requirements that can be met advan-
tageously through the use of this research facilitv.  1ts applicability
to problems of fire as a collateral effect of nuclear explosions is selt-
cvident, and we recommend that the facility's unique features be used
to turther our understanding of the basic physics of interaction of air
blast with fires in support of tactical and strategic targeting as well
as in support ot national preparcdness (e.p., FEMA) planning. We also
sugpest that there are quite probably other uses for this facility that
have nothing to do with fire problems, and we urge DNA to consider th

racilitv's unique capabilities with other nuclear weapons cffects .

rescvarch appltications in mind.
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